• Aulia Aisyah Sudrajat Fakultas Kedokteran Universitas Mulawarman Samarinda
  • Nur Khoma Fatmawati Fakultas Kedokteran Universitas Mulawarman Samarinda
  • Ronny Isnuwardana Fakultas Kedokteran Universitas Mulawarman Samarinda
  • Hary Nugroho Fakultas Kedokteran Universitas Mulawarman Samarinda
Keywords: Phaco Time, Central Corneal Thickness, Phacoemulsification, Diabetes Mellitus


Corneal endothelium is the structure in the anterior segment of the eye that gets the most impact from the phacoemulsification of cataract. Corneal endothelial dysfunction cause an increase in central corneal thickness (CCT). Several factors that can affect CCT after phacoemulsification are phaco time and history of diabetes mellitus (DM). Phaco time or effective [elapsed] phacoemulsification time (EPT) is the total time at 100% phaco power, measured in seconds. This research aims to investigate the correlation between phaco time and post phacoemulsification CCT in cataract patients with diabetes mellitus. This research was analytical observational research using prospective cohort study design. 160 samples were selected which consisted of 34 cataract patients with DM and 131 cataract patients without DM. The Spearman test was used to analyze the correlation between phaco time and post phacoemulsification CCT. The p-value < 0.05 indicates that there is a significant correlation between the variables. The results of this research showed that there was no correlation between phaco time and post phacoemulsification CCT both in cataract patients with DM (p=0.959) and without DM (p=0.397).


Agrawal, M., Gore, V., Choudhary, A., Alex, J., & Shah, A. (2021). A study on measurement of central corneal thickness changes in postoperative period of phacoemulsification cataract surgery. TNOA J Ophthalmic Sci Res.

Altintas, A. G. K., Coban, P., Arifoglu, H.B., Koklu, G., Ozcan, P. Y. & Sonmez, K. (2016). Comparison of phacoemulsification parameters effect on macular thickness changes after uneventful phacoemulsification in diabetic and non-diabetic patients. Guoji Yanke Zazhi. 16. 201-206. 10.3980/j.issn.1672-5123.2016.2.02.

American Academy of Ophthalmology (American Academy of Ophthalmology). (2019). Basic and Clinical Science Course.

Ayala, M., Strandås, R. (2015). Accuracy of optical coherence tomography (OCT) in pachymetry for glaucoma patients. BMC Ophthalmol 15, 124.

Bhavsar, S. G., Sisodiya, S., & Kshatriya, E. T. (2021). Central corneal thickness and effective phaco time in Phacoemulsification surgery at a tertiary care hospital of Gujarat, INDIA. Journal of Health Sciences and Professions Education, 1(2), 41–44.

Chen, C., Zhang, B., Xue, J., Li, Z., Dou, S., Chen, H., Wang, Q., Qu, M., Wang, H., Zhang, Y., Wan, L., Zhou, Q., & Xie, L. (2022). Pathogenic Role of Endoplasmic Reticulum Stress in Diabetic Corneal Endothelial Dysfunction. In Investigative Opthalmology & Visual Science (Vol. 63, Issue 3, p. 4).

Ciorba, A.L., Roiu, G., Abdelhamid, A.M., Saber, S., Cavalu, S. (2023). Evaluation of the Corneal Endothelium Following Cataract Surgery in Diabetic and Non-Diabetic Patients

Ganesan, N., Srinivasan, R., Babu, Kr., Vallinayagam, M., (2019). Risk factors for endothelial cell damage in diabetics after phacoemulsification. Oman J Ophthalmol.

Grzybowski, A., Kanclerz, P., Huerva, V., Ascaso, F. J., & Tuuminen, R. (2019). Diabetes and Phacoemulsification Cataract Surgery: Difficulties, Risks and Potential Complications. In Journal of Clinical Medicine (Vol. 8, Issue 5, p. 716).

Gurnani B, Kaur K. Phacoemulsification. [Updated 2022 Dec 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from:

Haddad, J. S., Borges, C., Daher, N. D., Mine, A., Salomão, M., & Ambrósio, R., Jr (2022). Correlations of Immediate Corneal Tomography Changes with Preoperative and the Elapsed Phaco Parameters. Clinical ophthalmology (Auckland, N.Z.), 16, 2421–2428.

Hardiman-McCartney, H. (2020). Corneal thickness measurement: Pachymetry a practitioner’s guide.

Ibrahim, T., Goernert, P., & Rocha, G. (2019). Intraoperative outcomes and safety of femtosecond laser-assisted cataract surgery: Canadian perspective. In Canadian Journal of Ophthalmology (Vol. 54, Issue 1, pp. 130–135). .

Igarashi, T., Ohsawa, I., Kobayashi, M., Umemoto, Y., Arima, T., Suzuki, H., Igarashi, T., Otsuka, T., & Takahashi, H. (2019). Effects of Hydrogen in Prevention of Corneal Endothelial Damage During Phacoemulsification: A Prospective Randomized Clinical Trial. In American Journal of Ophthalmology (Vol. 207, pp. 10–17). Elsevier BV.

Kandarakis, A., Soumplis, V., Karampelas, M., Koutroumanos, I., Panos, C., Kandarakis, S., & Karagiannis, D. (2012). Response of corneal hysteresis and central corneal thickness following clear corneal cataract surgery. In Acta Ophthalmologica (Vol. 90, Issue 6, pp. 526–529).

Khaja W, Grover S, Kelmenson A, Ferguson L, Sambhav K, Chalam K. (2015). Comparison of central corneal thickness: ultrasound pachymetry versus slit-lamp optical coherence tomography, specular microscopy, and Orbscan. Clin Ophthalmol.

Kiziltoprak, H., Tekin, K., Inanc, M., & Goker, Y. S. (2019). Cataract in diabetes mellitus. In World Journal of Diabetes (Vol. 10, Issue 3, pp. 140–153). Baishideng Publishing Group Inc.

Kunzmann, B. C., Wenzel, D. A., Bartz‐Schmidt, K. U., Spitzer, M. S., & Schultheiss, M. (2019). Effects of ultrasound energy on the porcine corneal endothelium – Establishment of a phacoemulsification damage model. In Acta Ophthalmologica (Vol. 98, Issue 2).

Menapace, R., Schartmüller, D., Röggla, V., Reiter, G. S., Leydolt, C., & Schwarzenbacher, L. (2021). Ultrasound energy consumption and macular changes with manual and femtolaser‐assisted high‐fluidics cataract surgery: a prospective randomized comparison. In Acta Ophthalmologica (Vol. 100, Issue 2).

Özmen, S., Çakır, B., Aksoy, N. Ö., Doğan, E., Babashli, T., & Alagöz, G. (2017). Central corneal epithelial thickness changes after half-moon supracapsular nucleofractis phacoemulsification technique. In International Ophthalmology (Vol. 39, Issue 2, pp. 311–315).

Manasvi, P., Panimalar, V., Veeramani, A., N, D., & Bhaskaran, B. (2021). Analysis of Cataract in Diabetic and Non-Diabetic Patients. In International Journal of Current Research and Review (Vol. 13, Issue 06, pp. 67–71).

Pradhevi, L., Moegiono, & Atika. (2012). Effect Of Type-2 Diabetes Mellitus On Cataract Incidence Rate At Ophthalmology Outpatient Clinic, Dr Soetomo Hospital, Surabaya. Folia Medica Indonesiana Vol. 48 No. 3, 137-143

Ramesh, P.V., Jha, K.N., Srikanth, K. (2017). Comparison of Central Corneal Thickness using Anterior Segment Optical Coherence Tomography Versus Ultrasound Pachymetry. JCDR.

Stjepanek K, Hirnschall N, Amir-Asgari S, Julius, H., & Oliver, F.. (2021). Protecting the Corneal Endothelium during Cataract Surgery Using the Anterior Capsulorhexis Flap as a Corneal Protection Shield. Ophthalmol Res. 4(1); 1-6.

Suraida, A.-R., Ibrahim, M.,& Zunaina, E., (2018). Correlation of the anterior ocular segment biometry with HbA1c level in type 2 diabetes mellitus patients. PLoS ONE.

Uyar, E., (2022). The association between postoperative corneal edema and phacoemulsification level. j-ebr.

Zheng, T., Yang, J., Xu, J., He, W., & Lu, Y., (2016). Near-term analysis of corneal epithelial thickness after cataract surgery and its correlation with epithelial cell changes and visual acuity. Journal of Cataract and Refractive Surgery.

Abstract = 110 times
PDF downloaded = 96 times